1702010

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2013

Spatial-Mode Discrimination in Guided and
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Witodzimierz Nakwaski, Vladimir Iakovlev, Nicolas Volet, and Eli Kapon

Abstract—Three means of optical confinement imposed on In-
AlGaAs/InP 1.3 pm VCSEL arrays are investigated with self-
consistent numerical model of laser operation. Laterally patterned
tunnel junction (TJ), in-build guiding realized with air-gap pat-
terning, and antiguiding schemes are investigated and optimized
to achieve single-mode operation. The analysis shows that mode
discrimination in laterally patterned TJ is very responsive to the
injected current, the air-gap patterning reduces influence of the
working conditions and supports multimode operation, and finally,
antiguiding schemes provide single-mode operation for prescribed
geometrical design.

Index Terms—Laser arrays transverse optical modes, vertical-
cavity surface-emitting lasers (VCSELSs).

I. INTRODUCTION

IGH-power single-mode vertical-cavity surface-emitting

lasers (VCSELSs) present many benefits, as coherent opti-
cal sources enabling smooth tuning of wavelength with current
and temperature. Emerging applications include inexpensive
and portable devices used in sensing, imaging, telecommuni-
cations, etc. For these applications, it is preferable to have a
large side-mode suppression ratio (SMSR) and high-power VC-
SELs. It is very difficult, however, to combine both properties
in one device. For GaAs/AlGaAs-based VCSELs, the control
of large SMSRs can be achieved using well-established wet
oxidation technology, which makes possible single-mode oper-
ation only for relatively narrow apertures, typically providing
less than 5 mW of output power [1]. Other methods provid-
ing higher emitted power and single-mode operation exploit
microoptical structures: surface relief (12 mW) [2], antireso-
nant patterning (7 mW) [3], patterned tunnel junctions (TJs,
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6 mW) [4], and photonic crystals (3 mW) [5]. Considerably
higher levels of emitted power can be achieved using broad-
area VCSELSs (nearly 100 W under pulse operation [6] and 3 W
under continuous operation [7]) at the expense of a broad emis-
sion spectrum. Vertical-external-cavity surface-emitting lasers
(VECSELs) [8] offer another approach to reaching a consider-
ably larger power and narrow spectral width. Their drawbacks
are high power consumption and bulky construction encompass-
ing an output coupler and an etalon to reduce the width of the
laser spectrum, in addition to the external laser pump.

A compromise method of achieving a compact, low-cost so-
lution with moderate electric power consumption, which is able
to emit a high-power beam with large SMSR, is to combine sev-
eral emitters into a phase-locked array [9]. The vertical geometry
of the device assures a narrow linewidth by the selection of a
single longitudinal standing wave, in resonance with the quan-
tum wells emitting at the active region. The sole mechanism
enabling linewidth broadening originates from the existence of
transverse modes of two kinds. The first are the modes of the
single emitter; the second are the array’s supermodes, which are
the linear combination of the modes of the single emitter [10].
The key to narrow spectral linewidth is to control the number
of these two kinds of mode. The first kind can be controlled by
varying the dimension of the single emitter or by patterning the
optical confinement. Controlling the second kind of mode is far
more problematic.

Since 1985, when the groundbreaking work on VCSEL ar-
rays by Uchiyama and Iga [11] was published, there has been
a significant number of works investigating these devices both
experimentally [12]-[14] and theoretically [15]-[17]. Only few
representative reports are cited here. Nevertheless, theoretical
analysis of VCSEL arrays has been limited to the separate con-
siderations of thermo-electrical or optical phenomena. There
is thus a need for parametrical analysis, which combines in
a self-consistent manner thermal, electrical, and optical three-
dimensional models.

This paper presents an analysis of optical confinement and
carrier injection in VCSEL arrays aimed at the optimization of
single-mode operation. We investigate three methods of mode
confinement: thermal focusing, in-build waveguiding, and an-
tiresonant reflecting optical waveguiding (ARROW). Although
only one design provides strong single-mode operation, we in-
vestigate very carefully all means of the optical confinement to
analyze the physical reasons for different spectral characteris-
tics of VCSEL arrays. We assume strong mode discrimination
and a narrow lasing spectral width as criteria for evaluating con-
finement methods. Conclusions about possible optimal designs
are derived.

1077-260X © 2013 IEEE
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Fig. 1. Schematic view of considered designs (cross sections): (a) tunnel-
junction VCSEL array, (b) air-gap tunnel-junction VCSEL array, (c) antireso-
nant reflecting optical waveguide tunnel-junction VCSEL array. The insets in
the upper part of each panel show top views of the patterned structures. The
separation between the emitters (L) and the coordinate system applied in the

analysis of all the three designs are shown in (a). The etching depth (dg ) of

air-gap patterning is defined in (b)

II. VCSEL ARRAY STRUCTURE AND NUMERICAL MODELS

The analyzed structure (see Fig. 1) [13] incorporates InAl-
GaAs quantum wells within an InP cavity. The cavity is bounded
by 35 pairs of Aly.9Gay 1 As/GaAs DBRs from the bottom and
20 pairs of Aly.9Gag.1 As/GaAs DBRs from the top. Laterally
patterned TJ layers are responsible for funneling carriers into
the active region and for the resultant separately defined emit-
ters (pixels). In the analysis, we consider 3 x 1 VCSEL arrays,
which are composed of three square-shaped TJ mesas of dimen-
sions 6 um x 6 pm as shown in Fig. 1. The emitted wavelength
of this TJ VCSEL array, close to the threshold, is about 1310 nm.
To simulate rigorously the physical phenomena taking place in
the device, we use a multiphysical model [18], [19], which com-
prises three-dimensional models of optical (plane wave admit-
tance method), thermal, electrical, and diffusion phenomena (all
the three based on finite-element method). Such comprehensive
model allows to determine the modes which are strongly enough
confined to appear in the laser spectrum. The model used in the
analysis is very well suited for that goal since precisely includes
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TABLE I
PHYSICAL PARAMETERS USED IN THE SIMULATION AT 300 K (+—THE
VALUE HAS BEEN FOUND FROM THE COMPARISON OF
THE MODEL WITH EXPERIMENT)

Material Thermal  Refractive index dn/dT [1/K]
conductiv  for 1.31 pm
ity
[W/(mK)]
InP 71[20] 3.2[21] 2.79 10**
QW 4[22] 3.6 [23] 310%*
Ing 7Aly,Gay 13As
Barier and TJ: 4[22] 3.3[23] 3107 *
Ing 4Aly3,Gaga6As
AlgsGag1As 26.3[24]  2.95[25] 1.37 10 [25]
GaAs 45.4[24] 3.42[25] 2.67 10 [25]
InGaAsP 19 [26] 3.4 [27] 3107 *
In 81.63 [28] - -
Cu 400.8 [29]
Diffusion parameters for Ing Al 2Gag13As QW:
A[l/s] 7107 [30]
dA/dT [1/sK] 1.4 10°[30]
B [cm’/s] 1.1107°25]
dB/dT [em’/sK] 221087
C [em®/s] 55107 *
dC/dT [em%sK] 4410717
D [cm?/s] 107

Gain parameters for Ing¢;Aly2Gag 13As QW

Eff. electron mass in QW 0.052 [30]
Eff. heavy hole mass in QW 0.477 [30]
Eff. light hole mass in QW 0.103 [30]
Eff. electron mass in B-r 0.071 [30]
Eff. heavy hole mass in B-r 0.6 [30]

Eff. light hole mass in B-r 0.14 [30]

Aso [eV] 0.3548 [30]
7 [ps] 0.1"

E, QW [eV] @ 300 K 0.86 [301™"
dE/AT QW [eV/K] -2.3 107 [30]
conduction band depth [eV] 0.30171 [30]

valence band depth [eV] 0.14676 [30]

all physical phenomena contributing to the modifications of the
refractive index distribution in the laser. The model does not
determine which modes are lasing, but which of them have po-
tential to lase. Such an approach allows determining the maximal
broadening of the laser spectrum, which does not change if the
analysis includes spatial hole burning (SHB). SHB is the process
which introduces competition between the modes but it does not
change their wavelengths. Moreover the parametrical study in
which SHB is included would lead to the critical increase of the
computational requirements. In the past only simpler models
were used in parametrical studies of VCSEL arrays [15]-[17].
The simplification of the model by ignoring electrical or thermal
phenomena leads to neglecting thermal focusing, which is an
important mechanism responsible for confining the modes. The
model used in the analysis is the a tradeoff allowing for precise
and extensive analysis of large range of the construction param-
eters. The material parameters used in the analysis are shown in
Table I.

The optical confinement methods mentioned earlier are il-
lustrated in Fig. 1. In the structure without any lateral in-build
distribution of the refractive index, thermal focusing is the dom-
inant process. Such a structure is illustrated in Fig. 1(a). Only the
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TJ layer provides here a nonuniform distribution of the refrac-
tive index in the lateral z-y direction. In the fabrication process,
a highly doped InAlGaAs layer is etched to form separate is-
lands and then overgrown with InP to provide the patterned TJ
structure [13]. The contrast between the refractive indexes of
the TJ InAlGaAs layer and the neighboring InP layer is 0.2. The
influence of the refractive index contrast on the lateral-mode
distribution is significantly reduced by placing the TJ layer in
the node of the standing wave. Hence, the dominant effect re-
sponsible for the confinement of the modes is thermal focusing.
In the structure of the TJ VCSEL array, the dominant parameters
affecting the modal characteristics and the modes distributions
are the separation between the TJ squares (L) and the injected
current (I). Both are investigated here in the broad range of
values: 0 < L <4 pm and 11 mA < I < 30 mA.

Air-gap patterning, which is introduced at the interface be-
tween the cavity and the top DBR [see Fig. 1(b)], is responsible
for further stabilizing the mode distribution, rendering it in-
dependent of thermal focusing [31]. The air-gap patterning is
designed in such a way as to create separate windows for each
emitter. Hence, the dominant effect on modal characteristics and
optical-mode distribution is caused by the geometry of the air-
gap patterning. In the case of an air-gap tunnel-junction (AG TJ)
VCSEL array, one should evaluate the effect of the etching depth
and the distance between the emitters (L), since an increase in
both the parameters strengthens the optical confinement effect
and causes corresponding modifications in the mode parame-
ters. However, evaluation of the mode confinement driven by
a change in etching depth (dg) is more instructive, since this
shows the mode evolution from a weak confinement case driven
by thermal focusing to a strong confinement governed by an
etching depth of 180 nm.

The third design that we analyze utilizes an ARROW scheme,
which is also introduced by patterning the interface between the
cavity and the top DBR, covering the TJs [see Fig. 1(c)]. In the
simulations, we assumed that the low-refractive-index material
used to create the ARROW structure is ZnSe [32], represented by
arefractive index equal to 2.46 [33]. In the ARROW TJ VCSEL,
the mode is confined laterally by the constructive interference
of the light reflected from the interfaces, between the islands of
low and the regions of high refractive index. Such a mechanism
favors selectively modes in resonance with the ARROW struc-
ture, which is expected to be the origin of strong discrimination.
Since here interference is the mechanism governing beam con-
finement, the distance between the low refractive index islands
(L) is crucial in assuring resonance conditions.

III. CURRENT INJECTION AND TEMPERATURE DISTRIBUTION

The current flow and the recombination of carriers are the
main sources of heat generation in lasers and are taking place
in their active regions. Heat is generated by the nonradiative
recombination processes in the quantum wells and by the
Peltier effect at the edges of the active region, where the carriers
cross near the 0.5 eV energy step from the InP cladding to the
InAlGaAs barrier. Their kinetic energy is dissipated through
the phonons contributing to the heating of the structure. These
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Fig.2. Distributions of the temperature (left column) in the plain perpendicular
to the active region (x—z plane) and carrier concentration (right column) in the
active region under current injection equal to 20 mA for three different distances
between emitters [(a) and (b)] L = 0.1 pm, [(b) and (c)] L = 4.0 pm, and [(e)
and (f)] L = 8.0 um.

processes, as well as the volume Joule heating in all structure
layers and the barrier Joule heating in the contacts have
been taken into account in our analysis. Fig. 2 illustrates the
calculated temperature distribution in the TJ VCSEL array [see
Fig. 1(a)]. In the calculations, we vary the distance between the
emitters (L) in the range from 0.1 to 8 um. The heat generated
in the active region is transferred through the substrate to the
heat sink, and only a very small part of it is transported to
the top DBR, where the heat is dissipated by the convection
process. The distance between emitters affects predominantly
the temperature distribution within the VCSEL, which governs
the distribution of the refractive index. The transition from a
small to a large distance (8 pm in our analysis) between emitters
modifies the temperature and the refractive index distributions
(see Fig. 2). In the case of a small distance [see Fig. 2(a)],
the temperature distribution is very similar to that observed in
broad area VCSELs, so pixels do not behave as separate heat
sources. An increase in the distance between emitters leads to a
weaker overlap of the temperature distributions of neighboring
emitters and to more pronounced thermal separation of the
emitters. In this case, three peaks in the temperature can be
observed on top of the dominant central peak [see Fig. 2(b)].
An even larger distance between emitters [see Fig. 2(c)]
reduces the thermal interaction between emitters, which is
manifested in a drop in the temperature between the emitters.
In the case of close packing of the emitters, the heat transfer is
somewhat hampered, while a large distance between emitters
broadens the heat path to the heat sink and leads to a more
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Fig. 3. Maximal temperature (7}, ,x ) in the active region as the function of
the distance between emitters (L) in the case of TJ VCSEL [see Fig. 1(a)] under
20 mA injection.

intense heat flux. Increasing the distance between the emitters
contributes to a reduction of the maximal temperature (see
Fig. 3). However, the reduction of the maximum temperature is
not the dominant effect affecting the modal characteristics, but
rather the change in temperature distribution is more significant.

The calculated threshold current of the single TJ VCSEL of
the same vertical design as shown in Fig. 1(a) and square-shaped
TJ of dimension 6 um x 6 pum equals 3 mA, while the threshold
current of TJ VCSEL array is slightly above 6 mA. The modifi-
cation of the carrier concentration within the active region, due
to change in the emitter separation, reveals a transition from
the distribution similar to a single, broad aperture laser [see
Fig. 2(b)], through intermediate distribution [see Fig. 2(d)], to
the distribution typical of separate, nearly independent emitters
[see Fig. 2(f)]. The carrier density is very uniform within each
emitter. It is mostly driven by the geometry of the contacts and
by the use of the TJ, which reduces the amount of p-layers
and eliminates the current crowding effect through a very high
doping level. Consequently, the gain distribution is close to a
Gaussian distribution, as a result of diffusion in the active re-
gion. The SHB effect (SHBE) is not considered in our analysis,
which focuses on providing an exhaustive parametrical study of
the different VCSEL array designs, and on methods of mode
confinement. In the case of multimode operation, the numerical
analysis of SHBE is extremely time consuming since the mode
competition is a strongly nonlinear phenomena. Moreover, the
influence of the distribution of the carriers on the optical con-
finement mechanism is dominated by thermal focusing, which
occurs not only in the active region but also in the whole vol-
ume of the device. SHBE is responsible for governing mode
competition; however, its influence on the shape of particular
modes is almost imperceptible. In the present analysis, we have
decided to keep a constant level of carriers in the active region,
regardless of the current injection, and to maintain all the other
current dependences on (to mention only the most dominant)
heat generation, the refractive index, on gain, electrical conduc-
tivity, and on thermal conductivity. In such an approach, the
determination of the modal gain provides information on the
modes interaction with the active region. The modes that are
strongly confined acquire large modal gain due to their large
overlap with the gain in the active region. Another approach, in
which one would neglect the SHBE and take into account the
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realistic relation between current injection and carrier concen-
tration in the active region, would lead to an unrealistic increase
in modal gain, which should be zero while lasing, due to the bal-
ance between generated and emitted/absorbed photons. We have
therefore chosen an intermediate approach in which we find a
level of injection close to the threshold for a typical design and
use the same current injection to calculate the diffusion of carri-
ers in a plethora of designs. This allows us to reach close to the
real level of the carriers in the active region and to significantly
reduce the computational time neglecting SHBE. On the basis of
the carrier distribution, we determine the spatial dependence of
the gain taking into account the temperature distribution within
the active region. This allows us to find the modal gains in the
considered designs. Hence, our investigation determines:

1) the influence of thermal and in-built mode confinement on

mode discrimination;

2) the set of the modes that are expected to be present in the

lasing spectrum;

3) the spectral width that we define as the spectral distance

between two extreme modes.

The differences between the three analyzed structures are
relatively insignificant with respect to the thermal and electrical
properties. The AG and ARROW patterns responsible for optical
confinement are distant from the current path; hence, they do
not affect the current flow. Additionally, although both patterns
are defined by smaller thermal conductivities as compared to
that of InP (0.022 W/(m-K) for ZnSe and air an 18 W/(m-K) for
InP), they are placed above the active region; hence, they do not
affect the heat transfer to the heat sink. This explains the very
similar distributions of the temperature within the three designs
considered and nearly identical carrier distributions under the
same level of injection.

IV. TJ VCSEL ARRAY

Properly designed single-emitter TJ VCSELs, considered
here, typically provide single-mode operation from the threshold
to the rollover [34] point. The resulting mode distributions may
display mode patterns with more near-field lobes than TJ pixels,
as illustrated in Fig. 4 for a three-pixel TJ VCSEL array. This
figure shows the typical mode distributions considered in the
analysis. These exemplary mode distributions in the plane of the
active region have been calculated for the TJ VCSEL array [see
Fig. 1(a)], under 20 mA current injection. Fig. 4(c) illustrates a
so-called array mode ¢ » defined by the number of lobes equal
to the number of pixels. Such array mode is especially desired to
achieve high efficiency of laser operation, since it provides the
best overlap between the gain and the mode distribution. Fig. 5
illustrates the influence of the distance between the emitters on
the modal characteristics for three different currents, which cor-
respond to the proximity of the threshold (11 mA), intermediate
excitation (20 mA), and near rollover (30 mA). Fig. 5(a) shows
the wavelength of the possible modes, while Fig. 5(b) shows
their modal gains.

Low-level injection produces a moderate gradient in the tem-
perature in proximity to the active region. A weak guiding mech-
anism confines very low order modes only. Fig. 5(b) shows two
modes (g¢,0, €0,1) of the largest and relatively close modal gain
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for designs with small distance between emitters. £ o is the
mode of the largest modal gain; however, it does not determine
whether this mode dominates, since mode domination is even-
tually the result of mode competition due to SHBE, which is
not considered here. However, the largest modal gain of ¢ o
indicates that the mode appears first above the threshold. The
modal gain of ¢ ; is very close to that of )¢ and probably
those two modes can be observed in the lasing spectrum, since
€01 1s predominantly concentrated in the first and third pixel,
while ¢  is located predominantly at the second pixel; hence,
both the modes are fed by stimulated photons generated in the
independent pixels. Their spectral distance is only 0.2 nm [see
Fig. 5(a)], which yields a very narrow emitted spectrum. The
third array mode € » is of relatively low modal gain, since the
thermal focusing effect is too weak to efficiently confine the ar-
ray mode and all other higher order modes characterized by sig-
nificant modal absorption. An increase in the distance between
the emitters allows for better overlap between broad modes (g2
and ¢ 3) and regions of positive gain. The modal gain of such
modes increases with increasing distance between pixels, since
the shift of the emitters is bigger than the broadening of the
mode distribution. Such behavior reduces the absorption of the
outer lobes. The modal gain of all other modes, whose distribu-
tions overlap the gaps between the TJ pixels, decreases since the
gain between the emitters reduces with the increase in distance
between pixels [see Fig. 2(b), (d), and (f)]. If the distance is
larger than 2 um, €( » dominates with respect to the modal gain,
since it becomes adjusted very closely to the gain distribution.
Hence, for a distance between emitters larger than 2 um three
modes can be present in the spectrum, which makes the spec-
trum 0.3 nm wide. A further increase in the distance between the
emitters reduces the spectral width to 0.25 nm [see Fig. 5(a)].
Increasing the injection level [see Fig. 5(c) and (d)] introduces
stronger thermal focusing, which is manifested in spectral red-
shift [see Fig. 5(a) and (c)] and in the reduction of the modal
gain difference between higher order modes: ¢ 2, €03, and € 4
[see Fig. 5(b) and (d)]. Additionally, the array mode becomes
dominant in structures with a smaller distance between emitters
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Fig. 5. [(a), (c), and (e)] Mode wavelengths and [(b), (d), and (f)] modal gains

as a function of the distance between the emitters (L) for three different currents:
[(a) and (b)] 11 mA, [(c) and (d)] 20 mA, and [(e) and (f)] 30 mA for the TJ
VCSEL array [see Fig. 1(a)].

(L = 1.5 pm). 9,0, €01, and €y » are modes of the largest and
closest value to the modal gain in the case of small distances
[see Fig. 3(d)], so the spectrum of the emitted beam is of 0.6 nm
width. For larger distances between emitters, the array mode be-
comes more preferable since the gain between emitters reduces,
eliminating lower order modes, and ¢ 5 reveals the best overlap
with the gain distribution. The modal gain difference between
€0,2 and ¢ o reaches 3.3 cm~!. If such a modal gain difference
can be reduced by the mode competition, then one expects a
0.3 nm spectral width containing three modes. Otherwise, the
emitted beam would contain a single mode.

A very strong injection, close to the rollover point, produces
an even stronger thermal focusing, which confines additionally
€0,3. The emitted spectrum can be composed of at most four
modes, both for small and large distance between emitters. £ 2
is of largest modal gain; however, the difference with respect
to other modes is not significant and one can expect that mode
competition can lead to the coexistence of four modes in the
spectrum. Hence, the spectrum is expected to be 1.2 and 0.6 nm
wide in the case of small and large distances between the emit-
ters, respectively.

V. AG TJ VCSEL ARRAY

The main disadvantage of the TJ VCSEL array [see Fig. 1(a)]
is a lack of efficient control on the lateral-mode field distribu-
tions. The desired array mode distribution does not overlap the
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Fig. 6. The normalised intensity distribution of selected modes within the
plane of the active region (x-y plane) for different etching depth of the patterning
in an AG TJ VCSEL array structure [see Fig. 1(b)]. The columns correspond
to different etching depths (dg ) of AG (left column) dg = 0.02 pm, (central
column) dp = 0.08 pm, and (right column) dp = 0.18 pm. White borders
represent the borders of the AG patterning. The inner squares relate also to the
borders of TJ.

positive gain distribution well, since it is too broad under low
levels of injection, or it must compete with higher order modes
under strong thermal focusing, induced by a high level of in-
jection. We will investigate here whether the introduction of the
etched pattern at the interface between the cavity and the top
DBR would structure the array mode and discriminate against
the modes of which the lobes do not correspond to the etching
pattern. Such possibility is provided by the AG TJ VCSEL array.
We assume the same structure as that of TJ VCSEL array with
the air-gap patterning introduced at the interface between cavity
and top DBR [see Fig. 1(b)].

The optical confinement mechanism governed by the etched
pattern is limited to a small part of the cavity only, which is
thinner than 200 nm. On the other hand, the confinement mech-
anism triggered by thermal focusing affects the whole structure.
However, the first mechanism introduces a refractive index dif-
ference of four orders of magnitude larger than the second; and
according to the calculations, the influence of thermal focus-
ing on the mode distribution is eliminated in such designs for
an etched pattern deeper than 50 nm. Hence, to highlight the
essential influence of air-gap confinement on modal character-
istics, we will focus on an analysis of the etching depth varying
in the range from O to 180 nm under a constant level of injec-
tion, which we will set equal to 11 mA. The distance between
the emitters (L) is set at 0.4 pm. Larger distance causes weak
interaction between the emitters.

Fig. 6 shows the near-field distributions of the selected modes
in the AG TJ VCSEL array for different etching depths. First
column illustrates the distribution of the modes for shallow
etching depth of 0.02 pm, which nearly does not affect the
mode distributions with respect to the ones in the corresponding
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Fig. 7. (a) Mode wavelengths and (b) modal gains as a function of the etching
depth dp for 11 mA current in AG TJ VCSEL [see Fig. 1(b)].

TJ VCSEL array. The central column relates to 0.08 yzm etching
depth, which further confines the modes, and the lobes of the
modes become weakly localized in the pixels. The right column
(0.18 pm etch depth) shows strong confinement of the modes
and lobes of the modes become strongly localized in central
or outer pixels. Fig. 7 displays the (a) wavelengths and the
(b) modal gains of the modes supported by the structure as a
function of the etching depth dg. The increase in etching depth
brings about the confinement of higher order modes.

The lack of an air gap under 11 mA current injection al-
lows only two modes (g¢ 9, €0,1) to be confined strongly enough
to reach the threshold. Increasing the etching depth increases
confinement, which supports lasing of higher order modes. An-
other consequence of increasing the etching depth is a blueshift
of the emission wavelength, which is also typically observed
in single-emitter VCSELSs and is driven by strengthening of the
optical confinement [35]. The most characteristic behavior ob-
served in the case of air-gap VCSEL arrays is the grouping of
the modes. Fig. 7(a) shows that spectrally separated modes in
the case of shallow etching tend to be collected in groups under
deep etching. These groups are spectrally 1-2 nm apart, which is
a typical spectral separation in the case of single-emitter air-gap
VCSELs of 6 um x 6 pm aperture. Each group consists of sev-
eral modes, which spectral separation is of the order of 0.05 nm.
All the modes are strongly confined; hence, their modal gains
are close and large [see Fig. 7(b)]. Therefore, one can expect
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that depending on the mode competition many of those modes
contribute to the laser spectrum. As a consequence, the VCSEL
array spectrum resembles a comb consisting of several sepa-
rated teeth. The small spectral separation of the modes in the
tooth/group can be explained by the fact that an increase in the
etching depth reduces the interaction between the pixels and the
modes tend to single-emitter-like distribution within the pixel.
The modes, which are defined by the same number of lobes in
the pixel, create common groups.

Moreover, strongly confined modes are located either in the
single, central pixel or in the two outer pixels. Below, we show
the modes that create separate groups with respect to the number
of the lobes in the pixels. The numbers in the parentheses assign
whether mode occupies single pixel (1) or two pixels (2):

€0,0(1), €0,1(2), €0,2(2) — 1 lobe group

€0,3(1), €1,0(1), €1,1(2), €0,4(2), €1,2(2), €0,5(2) — 2 lobes
group

e1,3(1), €1,4(2), €1 5(2) — 4 lobes group

€2,0(1), €2,1(2), €0,6(1), €0,7(2), €0,8(2)— 3 lobes group.

VI. ARROW TJ VCSEL ARRAY

None of the previously analyzed designs reveals strong-mode
suppression. This shows that the confinement mechanism in
those structures is not selective and confines all the modes
roughly equally, reducing their discrimination. Antiresonant-
based designs achieve strong-mode discrimination [36]-[39] at
the expense, however, of large modal losses, originating in the
lateral leakage of the modes. The confining mechanism is based
on the coupling of lateral leaky modes, which adjust to the inter-
faces between the lateral regions of different refractive indexes
in a very similar way as the standing wave in the vertical di-
rection of the VCSEL. Hence, such a mechanism is selective
with respect to the lateral-mode distribution and can be tuned
by changing the distance between emitters (L). We investigate
here the influence of this distance on the modal characteristics
of an ARROW TJ VCSEL array [see Fig. 1(c)]. The structure
is based on the TJ VCSEL array design with the addition of
138-nm-thick ZnSe islands overgrown at the interface between
cavity and top DBR. The thickness of the ZnSe islands relates to
quarter-wavelength, and they are placed at the interface between
the cavity and the semiconductor DBR to additionally support
the reflection from the top DBR. Lateral positions and dimen-
sions of the ZnSe islands are identical to that of the TJ islands.
Similar to the analysis of the AG TJ VCSEL array, the contrast
of the refractive index produced by the ARROW structure is
several orders of magnitude larger than the gradient induced by
thermal focusing, and our analysis showed that its influence on
the mode distribution is insignificant. The calculations were also
performed under a constant level of injection, which we set at
11 mA. To analyze the mode modifications caused by a change
in the distance between emitters, we can trace the changes of
the arbitrarily chosen mode ¢ g which is the in-phase mode de-
sirable with respect to the quality of the far field. Additionally,
being of high-order mode ¢ g is a particularly interesting since
the modifications of the mode distribution are very illustrative
representing the transformations that concern all the modes in
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Fig. 8. Mode wavelength and modal gain of £y g mode as a function of the
distance between the emitters (L) for 11 mA current in ARROW TJ VCSEL
[see Fig. 1(c)]. The vertical lines determine the borders of the L-regions for
which the distribution of the mode is stationary with respect to the number of
lobes occurring in the particular pixels.

Fig. 9. The €¢,3 normalised mode distributions in the plane of the active
layer in the regions (a)—(f) depicted in Fig. 8 for 11 mA current. White squares
represents the borders of ZnSe islands and TJs.

TABLE II
CHARACTERIZATION OF & g DISTRIBUTION WITH RESPECT
TO THE DISTANCE BETWEEN EMITTERS (L)

Region Range of L- Number of lobes in Figure with the
region [um]  pixels mode distribution
a 0.2-1.2 3-3-3 9a
b 1.2-2.2 2-3-2 9b
c 2.2-3.2 2-1-2 9c
d 3.2-42 1-1-1 9d
e 5.2-6.2 0-1-0 9

The columns in the table specify the L-region determined in Fig. 8, range of the L-region
with respect to L, number of €9 g lobes in consecutive pixels, and number of the figure
representing the modes distribution.

the structures of the ARROW TJ VCSEL arrays. Fig. 8 shows the
influence of the distance between the emitters (L) on the wave-
length and modal gain of £ g. One can determine the ranges
of L for which the distribution of the mode is stationary with
respect to the number of lobes occurring in the particular pixels
(see Fig. 9). Each of these regions, which we call L-regions, is
nearly 1 pm wide. The number of lobes of ¢ g in the consecu-
tive pixels are given in Table II. L-regions a and b (see Fig. 8)
correspond to the distribution of the mode with three lobes in the
central pixel [see Fig. 9(a) and (b)], while ¢, d, and e (see Fig. 8)
correspond to one lobe in the central pixel [see Fig. 9(c)—(e)].
This shows that L-region d (see Fig. 8) is the most desirable
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Fig. 10. The £p g normalised mode distributions in the plane of the active
region at the interfaces c—d and d—e depicted in Fig. 8 for 11 mA current. White
squares represents the borders of ZnSe islands and TJs. Red color corresponds
to the maximal intensity of light.

with respect to the mode distribution [see Fig. 9(d)], which
overlaps in the most efficient way the gain distribution, and it
is defined by a low level of modal loss (see Fig. 8). The only
imperfection in the mode distribution in L-region d (see Fig. 8)
is the nonuniformity of the intensity peaks [see Fig. 9(d)]. These
become uniform at the transition points between L-regions c-d
and d-e only (see Fig. 8). The corresponding distributions of
the modes are shown in Fig. 10. The modal gain function (see
Fig. 8) reveals deep minima between the L-regions related to
the small distance between the emitters ( L-regions a, b, and ¢).
The transition points between L-regions a-b and b-c relate to
the unconfined mode distributions with enormous modal losses.
The wavelength of the mode changes abruptly at the transition
points between the L-regions a-b and b-c. They relate to three
lobes in the central pixel [see Fig. 9(a) and (b)]. Further tran-
sition points between the L-regions related to one lobe in the
central pixel [see Fig. 9(c)—(e)] can be noticed only as small
dips in the modal gain function (see Fig. 8). The function of the
wavelength remains almost constant in L-regions d and e.

Although one can observe considerable changes in the mode
distribution throughout L-regions a-f (see Fig. 8), we follow
0.8, which consists of nine lobes clearly visible in L-region a
only [see Fig. 9(a)], where all lobes have nearly equal ampli-
tudes. The transition between L-regions relates to the migration
of two lobes in the space between emitters and the reduction
of their amplitudes. L-region f relates to a situation in which
the last lobe remaining in the central pixel migrates to the space
between the pixels, which is equivalent to a deterioration of the
mode.

Fig. 11 illustrates the dependence of wavelength and modal
gain on the distance between the emitters (L) of several, lower
order, even modes. The odd modes have not been included in the
figure since they suffer from significant modal losses due to their
distribution. All the modes reveal similar behaviors but their
plateau on the wavelength and maximal modal gain L-regions
are shifted. This facilitates strong mode discrimination. Small
distance between emitters (L) supports strong discrimination.
We can notice the out-of-phase mode ¢y » being dominant for L
= 0.8 um (~10 cm™! discrimination), while the in-phase mode
€0,4 becomes dominant for L = 1.6 um (~6 cm~ ! discrimi-
nation). A larger distance between emitters no more supports
the domination of a single mode but rather supports pairs of
the modes. Then, the modal gain difference between the pair of
the dominating modes and others is of the order of 10 cm™'.
The spectral distance between couple modes is typically smaller
than 0.5 nm. These pairs consist of two neighboring even modes,
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distance between the emitters (L) for 11 mA current in ARROW TJ VCSEL.

which are in- and out-of-phase modes. Such behavior allows the
design of single-mode ARROW TJ VCSEL arrays with rela-
tively small distances between emitters. The construction ham-
pers efficient heat extraction from the active region. A larger
distance between the emitter would favor more efficient devices
allowing for stable, two-mode emission.

VII. CONCLUSION

Using a three-dimensional, self-consistent model of physi-
cal phenomena in VCSELs, we have investigated three means
of optical confinement in VCSEL arrays: thermal focusing ob-
served in the laterally patterned tunnel-junction (TJ VCSEL
array), in-build guiding realized in air-gap patterning (AG TJ
VCSEL array), and antiguiding implemented by low-refractive-
index material overgrowth (ARROW VCSEL array). We have
investigated the crucial parameters for these designs, which af-
fect the strongest mode distribution and modal characteristics.
In the case of TJ VCSEL arrays, it was the distance between
the emitters and the level of the injection; in the AG TJ VCSEL
array, we investigated the influence of the etching depth; finally,
in the ARROW TJ VCSEL array, we considered the distance
between the emitters. All the investigated means of confinement
were imposed on the InAlGaAs/InP 1.3 pm VCSEL structure.
The analysis showed that, in the case of TJ VCSEL array, a
distance between the emitters larger than 2 pm supports single-
mode operation under some injection levels. The maximal mode
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discrimination reaches 3.3 cm~! and the emitted mode is out
of phase ¢ 4. The width of the spectrum increases with the in-
jection level and with a reduction in the distance between the
emitters and may reach 2 nm. The AG TJ VCSEL is defined by
the largest modal gain induced by a strong, in-build waveguide
mechanism. The same mechanism of strong waveguiding is re-
sponsible for the disappearance of mode discrimination. Under
strong confinement, the modes tend to be localized in the central
or outer pixels and to convert into a typical single-emitter mode
distribution. The light emitted forms spectral combs where each
tooth is a group of modes, each with the same number of lobes
in a single pixel. The spectral distance between the two ex-
treme modes of one tooth is 0.3-0.5 nm, while the distance
between the teeth is 1-2 nm. The ARROW TJ VCSEL array
suffers from the largest modal losses due to the typical leak-
age of its modes. Strong mode discrimination was observed in
the range of 10 cm~! for out-of-phase and 6 cm™! for in-phase
modes, in the case of distances less than 2 m between the emit-
ters. Larger distances support two-mode operation. Pairs of in-
and out-of-phase modes are strongly discriminated from other
modes, while the modal gain gap reaches up to 10 cm™~!. The
spectral separation of the couple is less than 0.5 nm, and under
carefully designed parameters, it can further be reduced.
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